TECH 1G 1310nm 20km LC #### T-10G-SM-20KM Single-Mode 1310nm SFP+, With Diagnostic Monitoring 10G Base-LW/LR Duplex SFP+ Transceiver #### **Features** Operating Data Rate up to 10.3Gbps 1310nm DFB-LD Laser Transmitter Distance up to 10km with 9/125 µm SMF Single 3.3V Power Supply and TTL Logic Interface Hot-Pluggable SFP Footprint Duplex LC Connector Interface Compliant with MSA SFP+ Specification SFF-8431 Compliant with IEEE 802.3ae 10GBASE-LR/LW Power Dissipation < 1.0W. Operating Temperature Standard: -5~+70°C Industrial: -40~+85°C ### **Applications** - 10GBase-ER at 10.31Gbps - 10GBase-EW at 9.95Gbps - Other Optical Links ## **Ordering Information** | Part No. | Data Rate | Fiber | Distance | Interface | Temperature | DDMI | |----------------|---------------|-------|----------|-----------|-------------|------| | T-10GSM-20KM | 9.95~10.3Gbps | SMF | 20KM | LC | Standard | YES | | T-10G-SM-20KMI | 9.95~10.3Gbps | SMF | 20KM | LC | Standard | YES | ## **Product Description** The T-10GSM-20KM series multi-mode transceiver is SFP+ module for serial optical data communications such as 10GBASE-LR and 10GBASE-LW. It is with the SFP+ 20-pin connector to allow hot plug capability. This module is designed for single mode fiber and operates at a nominal wavelength of 1310 nm. The transmitter section uses a 1310nm multiple quantum well VCSEL laser and is a class 1 laser compliant according to International Safety Standard IEC-60825. The receiver section uses an integrated InGaAs detector preamplifier (IDP) mounted in an optical header and a limiting post-amplifier IC.. # **Regulatory Compliance** | Feature | Standard | Performance | | | |---|--|---|--|--| | Electrostatic Discharge
(ESD) to the
Electrical Pins | MIL-STD-883G
Method 3015.7 | Class 1C (>1000 V) | | | | Electrostatic Discharge
to the enclosure | EN 55024:1998+A1+A2
IEC-81000-4-2
GR-1089-CORE | Compliant with standards | | | | FCC Part 15 Class B Electromagnetic Interference (EMI) CISPR 22B :2006 VCCI Class B | | Compliant with standards Noise frequency range: 30MHz to 8GHz. Good system EMI design practice required to achieve Class B margins. customer host board and chassis design. | | | | Immunity | EN 55024:1998+A1+A2
IEC 61000-4-3 | Compliant with standards. 1KHz sine-wave, 80% AM, from 80MHz to 1GHz. No effect on transmitter/receiver performance is detectable between these limits. | | | | Laser Eye Safety | FDA 21CFR 1040.10 and 1040.11
EN (IEC) 60825-1:2007
EN (IEC) 60825-2:2004+A1 | CDRH compliant and Class I laser product. TüV Certificate No. 50135086 | | | | Component Recognition | UL and CUL
EN60950-1:2006 | UL File E317337
TüV Certificate No. 50135088
(CB scheme) | | | # **Absolute Maximum Ratings** | Parameter | Symbol | Min. | Max. | Unit | |---------------------|--------|------|------|------| | Storage Temperature | TS | -40 | +85 | °C | | Supply Voltage | vcc | -0.5 | 3.6 | V | | Input Voltage | Vin | -0.5 | Vcc | V | | Output Current | la | -: | 50 | mA | # **Recommended Operating Conditions** | Parameter | | Symbol | Min. | Typical | Max. | Unit | | |----------------------|------------|--------|------|---------|------|------|--| | Operating Case | TA | | -5 | | +70 | *¢ | | | Temperature | 10 | | -40 | | | | | | Power Supply Voltage | Vec | | 3.15 | 3.3 | 3.45 | V | | | Power Supply Current | lee | | | | 300 | mA | | | Surge Current | | turge | | | +30 | mA | | | Baud Rate | 10GBASE-LR | | | 10.31 | | Gbps | | | | 10GBASE-LW | | | 9.95 | | | | # **Performance Specifications – Electrical** | Parameter | Symbol | Min. | Тур. | Max | Unit | Notes | |------------------------------------|--------|-------|---------|---------|------|----------------------------| | | | Trans | smitter | | | | | CML
Inputs(Differential) | Vin | 150 | | 1200 | mVpp | AC Coupled
Inputs | | Input Impedance
(Differential) | Zin | 85 | 100 | 115 | ohms | Rin > 100
kohms @ DC | | Tx_Disable Input Voltage-High | | 2 | | Vcc+0.3 | v | | | Tx_Disable Input Voltage-Low | | 0 | | 0.8 | | | | TX_FAULT Output
Voltage-High | | 2 | | Vcc+0.3 | v | lo = 400μA;
Host
Vcc | | TX_FAULT Output
Voltage-Low | | 0 | | 0.8 | | lo = -4.0mA | | N-111 | | Red | eiver | | | | | CML Outputs
(Differential) | Vout | 350 | | 700 | mVpp | AC Coupled
Outputs | | Output Impedance
(Differential) | Zout | 85 | 100 | 110 | ohms | | | RX_LOS Output
Voltage-High | | 2 | | Vcc+0.3 | ν | lo = 400µA;
Host
Vcc | | RX_LOS Output
Voltage-Low | | 0 | | 0.8 | v | lo =- 4.0mA | | MOD DEE (0-2) | VoH | 2.5 | | | V | With Serial ID | | MOD_DEF (0:2) | VoL | 0 | | 0.5 | V | vviin Senai IU | # **Optical and Electrical Characteristics** ### 1310nm DFB and PIN 10KM | Parameter | Symbol | Min. | Typical | Max. | Unit | |-----------------------|--------|------|---------|------|------| | 9µm Core Diameter SMF | | | 10 | | km | | Data Rate | | | | 10.3 | Gbps | | | | | ransmitter | | | | |---|-----------------|----------------|------------|------|---------|---------| | Center Wavelength | | λε | 1270 | 1310 | 1355 | nm | | Spectral Width (RMS) | | Δ _λ | | | 1 | nm | | Average Output Power | | Pout | -6 | | 0 | dBm | | Extinction Ratio | | ER | 3.5 | | | dB | | Average Power of O | FF Transmitter | Por | | | -30 | dBm | | Side Mode Suppress | sion Ratio | SMSR | 30 | | | dB | | Transmitter Dispersi | on Penalty | TDP | | | 3.2 | dB | | Input Differential Imp | pedance | ZIN | 90 | 100 | 110 | Ω | | and bear | Disable | | 2.0 | | Vcc+0.3 | 3. | | TX Disable | Enable | | 0 | | 0.8 | V | | well are all | Fault | | 2.0 | | Vcc+0,3 | v | | TX_Fault | Normal | | 0 | | 0.8 | | | TX_Disable Assert T | ime | t_off | | | 10 | us | | TX_Disable Negate | Time | t_on | | | 1 | ms | | TX_BDHisable time | to start reset | t_reset | 10 | | | us | | Time to initialize, include reset of TX_FAULT | | t_init | | | 300 | ms | | TX_FAULT from fau | It to assertion | t_fault | | | 100 | us | | Total Jitter | | TJ | | | 0.28 | UI(p_p) | | Data Dependant Jitte | er | DDJ | | | 0.1 | UI(p-p) | | Uncorrelated Jitter | | UJ | | | 0.023 | RMS | | | | | Receiver | | | | | Center Wavelength | | λc | 1260 | | 1565 | nm | | Receiver Sensitivity | | Pmin | | | -14.4 | dBm | | Receiver Overload ² | | Pmax | 0.5 | | | dBm | | Optical Return Loss | | ORL | | | -12 | dBm | | LOS De-Assert | | LOSD | | | -15 | dB | | LOS Assert | | LOSA | -25 | | | dB | | 100 | High | | 2.0 | | Vcc+0.3 | 44 | | LOS | Low | | 0 | | 0.8 | V | # SFP+ Transceiver Electrical Pad Layout ## **Pin Function Definitions** | Pin
Num. | Name | Function | Plug
Seq. | Notes | |-------------|------------|------------------------------|--------------|--| | 1 | VeeT | Transmitter Ground | 1 | 5 | | 2 | TX Fault | Transmitter Fault Indication | 3 | 1) | | 3 | TX Disable | Transmitter Disable | 3 | 2) Module disables on high or open | | 4 | SDA | Module Definition 2 | 3 | Data line for Serial ID. | | 5 | SCL | Module Definition 1 | 3 | Clock line for Serial ID. | | 6 | MOD-ABS | Module Definition 0 | 3 | 3) | | 7 | RSo | RX Rate Select(LVTTL) | 3 | This pin has an internal 30k pull down to ground. A signal on this pin will not affect module performance. | | 8 | LOS | Loss of Signal | 3 | 4) | | 9 | RS1 | TX Rate Select(LVTTL). | 1 | This pin has an internal 30k pull down to ground. A signal on this pin will not affect module performance. | | 10 | VeeR | Receiver Ground | 1 | 5) | | 11 | VeeR | Receiver Ground | 1 | 5) | | 12 | RD- | Inv. Received Data Out | 3 | 6) | | 13 | RD+ | Received Data Out | 3 | 7) | | 14 | VeeR | Receiver Ground | 1 | 5) | | 15 | VocR | Receiver Power | 2 | 7) 3.3 ± 5% | | 16 | VccT | Transmitter Power | 2 | 7) 3.3 ± 5% | | 17 | VeeT | Transmitter Ground | 1 | 5) | | 18 | TD+ | Transmit Data In | 3 | 8) | | 19 | TD- | Inv. Transmit Data In | 3 | 8) | | 20 | VeeT | Transmitter Ground | 1 | 5) | #### **Notes:** 1) TX Fault is an open collector/drain output, which should be pulled up with a 4.7K – 10K_ resistor on the host board. Pull up voltage between 2.0V and VccT/R+0.3V. When high, output indicates a laser fault of some kind. Low indicates normal operation. In the low state, the output will be pulled to < 0.8V. 2) TX disable is an input that is used to shut down the transmitter optical output. It is pulled up within the module with a $4.7K\sim10~K$ resistor. Its states are: Low (0 – 0.8V): Transmitter on (>0.8, < 2.0V): Undefined High (2.0 – 3.465V): Transmitter Disabled Open: Transmitter Disabled - 3) Modulation Absent, connected to VEET or VEER in the module. - 4) LOS (Loss of Signal) is an open collector/drain output, which should be pulled up with a 4.7K –10KΩ resistor. Pull up voltage between 2.0V and VccT, R+0.3V. When high, this output indicates the received optical power is below the worst-case receiver sensitivity (as defined by the standard in use). Low indicates normal operation. In the low state, the output will be pulled to <0.8V.</p> - 5) VeeR and VeeT may be internally connected within the SFP+ module. - 6) RD-/+: These are the differential receiver outputs. They are AC coupled 100Ω differential lines which should be terminated with 100Ω (differential) at the user SERDES. The AC coupling is done inside the - module and is thus not required on the host board. The voltage swing on these lines will be between 400 and 2000 mV differential (185 –350 mV single ended) when properly terminated. - 7) VccR and VccT are the receiver and transmitter power supplies. They are defined as 3.3V ±5% at the SFP+ connector pin. Maximum supply current is 300mA. Recommended host board power supply filtering is shown below. Inductors with DC resistance of less than 1 ohm should be used in order to maintain the required voltage at the SFP input pin with 3.3V supply voltage. When the recommended supply-filtering network is used, hot plugging of the SFP+ transceiver module will result in an inrush current of no more than 30mA greater than the steady state value. VccR and VccT may be internally connected within the SFP+ transceiver module. - 8) TD-/+: These are the differential transmitter inputs. They are AC-coupled, differential lines with 100_ differential termination inside the module. The AC coupling is done inside the module and is thus not required on the host board. The inputs will accept differential swings of 400 2000mV (200 1000mV single-ended). #### **EEPROM** The serial interface uses the 2-wire serial CMOS EEPROM protocol defined for the ATMEL AT24C02/04 family of components. When the serial protocol is activated, the host generates the serial clock signal (SCL). The positive edge clocks data into those segments of the EEPROM that are not writing protected within the SFP transceiver. The negative edge clocks data from the SFP+ transceiver. The serial data signal (SDA) is bi-directional for serial data transfer. The host uses SDA in conjunction with SCL to mark the start and end of serial protocol activation. The memories are organized as a series of 8-bit data words that can be addressed individually or sequentially. The Module provides diagnostic information about the present operating conditions. The transceiver generates this diagnostic data by digitization of internal analog signals. Calibration and alarm/warning threshold data is written during device manufacture. Received power monitoring, transmitted power monitoring, bias current monitoring, supply voltage monitoring and temperature monitoring all are implemented. If the module is defined as external calibrated, the diagnostic data are raw A/D values and must be converted to real world units using calibration constants stored in EEPROM locations 56 – 95 at wire serial bus address A2H. The digital diagnostic memory map specific data field define as following .For detail EEPROM information, please refer to the related document of SFF 8472 Rev 9.3. ## **Mechanical Specifications** #### Notice: T-TECH reserves the right to make changes to or discontinue any optical link product or service identified in this publication, without notice, in order to improve design and/or performance. Applications that are described herein for any of the optical link products are for illustrative purposes only. T-TECH makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification. #### **Contact:** E-mail:sales@t-techvip.com http://www.t-techvip.com